Vol. 98 2024

バイオファクターと生命科学

第98巻(2024(令和6)年)総目次

編 集

吉 村 徹(委員長)

生 城 浩 子 池 田 彩 子 石 川 孝 博 小 暮 健太朗 瀧 谷 公 隆 田 中 清 津 川 尚 子 内 藤 裕 二 野 坂 和 人 福 渡 努 山 本 浩 範

公益社団法人 日本ビタミン学会 THE VITAMIN SOCIETY OF JAPAN

随想のページ (行頭の数字は号数)

1.	年頭のご挨拶						• • • • • • • •				·松浦	達也	巻頭
	_	//	<u> </u>		<u></u>	//~=	三个料	一 小. 口 *	.7.				
		窓 .	合 !	論	<u>X</u>	(行)	貝の数	字は号数	汉)				
1-1	疾患モデル動物を用いたビタミンDの新規生	理作	用メカ	カニン	ズムし	こ関す。	る研究				. 西川	美字	1
	硫黄またはセレンを含むアミノ酸・ペプチド					-1/4/	9 19170				ш/11	, ,	-
	存在、特性、機能ならびに補酵素の役割に	こ関す	トる研	究…			• • • • • • • • •				· 老川	典夫	53
	ビタミン K のフェロトーシス細胞死抑制作用											英換	91
	作用選択的なビタミン D 誘導体の創製研究 …											敦史	
11-1.	ビタミンE類縁体の抗がん作用に関する研究						• • • • • • • •				·佐藤	綾美	479
	特	重·	==	 ノビ	` ¬ –	- - (行5	頭の数	字は号数	汝)				
	<u>- 102</u>	~				_ (13.2	201220	, (0,) ,	~)				
	ビタミン研究の進歩と発展 ―ビタミン学の未来												
1-1.	N-アシルエタノールアミンの生合成機構と生	理機i	能 …			······		徹,位	こ々木す	⁻ みれ,	上田	夏生	8
性隹「៎	栄養・食品機能」(第 75 回大会 若手シンポジ	占 /、)										
	不良 Rangel (第75回八会 石テンンボン マリンカロテノイドの食品機能性の探索								直鍋	祐樹	菅原	達也	387
	フコキサンチン及びパプリカカロテノイドに									,			
, 1.			,		, ,	•		3 1/3 11 / 1	•		1147	1 / 4	
	原著・ノート・資	会料	・症	例報	· 告·	研究	論 文紹	 召介 (名	「頭の数	女字は昇	号数)		
		-211	/11.1	אדניו	. ш	P/1/0	DIII) ~ //	<u> </u>			3 3,0,		
2-1.	マウスにおける phospholipase A and acyltransfe												
	エスエムカレ												
	モハメッド マム	ンシ	'クタ)										<i></i>
2.2	全トランス型レチノイン酸に依存した LGR6 (の盆々	公ルル					正樹,					65
Z - Z.	北風 智也, j												70
3-1.	ジヒドロレチノイン酸類の合成と生物活性		-11/1	ν, μ		ν, ш,	1 ~	.,,	жш	E 127,	ще	<i>)</i>	, 0
	和田 昭盛, 村	公田	一朗],力	۰Ш	智大,	佐藤	陽,	岡野猛	&志夫,	中川	公恵	97
3-2.	胃がん患者における胃切除の術前および術後	早期	からの)ビタ	フミン	B 12 欠	泛						
												清	108
3-3.	長期経管栄養施行中の重症心身障害児(者)に												
												彰子	
								栄次,				隆史	
	豚の成長に伴う血清中 L-カルニチン濃度の変									トかり,	王堂	哲	285
5.6-2.	ウズラ雛へのビタミン D ₃ ・25-ヒドロキシビタ									古士	田之里	늄	200
5.6-3	3- <i>O</i> -Dodecyl-L-ascorbic acid の抗アレルギー作		••••••						ШШ	县米,	羔倖	元	289
5 0-5.	3-0-Dodecyi-L-ascoroic acid V70L7 V7V-1 TF		首指	i II	原	直晃	油田	芽衣,	大野	朝子	前	史織	
	'	- 7	P (1)					裕二,					296
7-1.	ビタミンE再生を利用した不溶性抗酸化材に	よる	食用油					,	12 214	,,,,,		. 14	
								卓,	廣森	浩祐,	北川	尚美	347

7-2.	3T3L1 における PQQ の取り込み:遊離型および培地中で生じたアミノ酸付加体を介した経路につい	って		
		伸川	清隆	353
12-1.	市販のべったら漬けと米麹製品に含まれるビタミン B12 含量の測定とビタミン B12 化合物の同定			
		渡邉	文雄	501
	ト ピ ッ ク ス (行頭の数字は号数 - 掲載順)			
	溶性ビタミン関係			
	炎症性腸疾患に対するビタミン D 摂取の意義			18
	短腸モデル動物における腸管順応とビタミン A	目崎	喜弘	74
8-1.	ビタミンEの生理作用解明に向けたタンパク質との結合に関する研究動向			
	中冨 毅,堀越 洋輔,松浦 達也,			
	アルツハイマー病に対するビタミン A の影響 増田 真志, 濱田 侑希, 谷口 陸斗,	竹谷	豊	488
12-1.	新たな臨床的ビタミン D バイオマーカーについて 蔡 楡,	桒原	晶子	506
	溶性ビタミン関係	.2. 111	<i></i>	
	新規形態のビオチン塩の開発とその効果 塩沢 浩太, 大崎 雄介,	日川	1二	21
5.6-1.	血清ビタミン B ₁₂ レベルが高い患者にみられるビタミン B ₁₂ 欠乏とマクロビタミン B ₁₂			
	山田 正二,		惠子	
	ビタミン C による尿路感染症予防の可能性		昭人	
	ビタミン C を用いた抗菌繊維の開発 伊藤 勇悟, 古賀 武尊,		章博	
	進化の過程でピリドキサールリン酸はチアミン二リン酸を代替したか		秀行	
	炎症時におけるナイアシンの GPR109A を介した神経保護作用			
11-1.	ウリジン <i>5</i> '-三リン酸によるチアミンピロリン生成とピルビン酸の酸化促進 ·······	野坂	和人	484
0 2				
3. 7		本店	日マ	116
			晶子	
			亮一	
			日南	
	認知機能障害モデル動物に対するガラクトース投与の相反する効果 岡田 和花, 大崎 雄介, 実験動物飼料の選択がデータ解釈を混乱させる	ΗЛΙ	仁	338
8-2.		什怕	茂	200
0.2	血液脳関門におけるリン脂質転送タンパク質の役割			
8-3.	血液胸質 におけるサン加負転送タンパク負の技剤	他田	杉丁	402
	第 76 回大会講演要旨 (行頭の数字は日 - 会場 - 発	- 実順位)	
	第 70 四八云神典安日 (日頭V 数字は日・宏物・光	11八尺 区	,	
受賞講	· 注			
	2賞受賞講演			
	: 用選択的なビタミン D 誘導体の創製研究	橘髙	敦中	146
	「タミン K および関連イソプレノイドのもつ新たな健康機能性に関する研究			150
	質受賞講演	⊢ /''I	<u> </u>	150
	「タミンE類縁体の抗がん作用およびビタミンCの生理機能に関する研究	佐藤	綾美	153
	「・技術・活動賞 受賞講演	P-1-13-15	~^	100
	・ 12 11 11 11 11 11 11 11 11 11 11 11 11	道下 :	拓毅	155
12	T = TL, DTT M, M	~- '	4 H 20X	100

特別講演			
戦国城下町一乗谷と医学 〜発掘された医師の実像〜	川越	光洋	158
シンポジウム 1			
『機能性食品研究とビタミン・バイオファクター学の接点』			
ビタミン D 栄養改善を目的とした食品機能の再考			
感覚栄養学とポリフェノール 越			
乳児における母乳フラボノイドの役割を考える村上 明,藤原 なお,			
カロテノイドの生体内抗酸化作用を再考する	寺尾 ;	純二	168
シンポジウム 2			
『酸化ストレス研究とビタミン・バイオファクター学の接点』			
酸素感知代謝物としてのビタミン B6 の機能		弘樹	172
トコトリエノールの神経保護作用について		浩二	174
自閉症とビタミン	松﨑	秀夫	176
シンポジウム 3			
『抗加齢医学研究とビタミン・バイオファクター学の接点〜ビタミン D 研究の臨床的知見から〜』			
リアルワールドデータから見るビタミン D 研究の課題 · · · · · · · · · · · · · · · · · · ·	越智	小枝	180
ビタミン D サプリメントは癌の再発・死亡を抑止できるか?	浦島	充佳	182
ビタミン D と抗加齢医療	満尾	正	184
健常高齢者における血中ビタミン D 濃度の挙動~京丹後長寿コホート研究からの知見をもとに~			
	内藤	裕二	186
ヒューマンニュートリションセッション			
胃粘膜萎縮の程度とビタミン B12 栄養状態との関連 ······	青	未空	190
日本人の健康とポリフェノールならびにカロテノイド摂取との関わり	岸本	良美	191
日本人若年女性におけるビタミン D 欠乏の実態と要因の探索並びに欠乏リスクツールの開発に資する	研究		
	桒原	晶子	192
セレン欠乏症を有する心不全患者の臨床的特徴	渡部	真吾	193
若手依頼講演			
テルペノイド生合成に関与するシス型プレニルトランスフェラーゼの先端的立体構造解析と酵素機能	改変		
	今泉	璃城	196
ナイアシン栄養状態を低下させる因子の解明	畑山	翔	198
プロビタミンAカロテノイドの骨格筋量調節作用	北風	智也	200
線虫を用いたビタミン・バイオファクター研究~ビタミン B12 欠乏症研究ツール/ヒト腸管を模擬した生物	デバイ	ス~	
	美藤	友博	202
炎症性腸疾患における食事性セリンの役割の解明~食事介入に対する腸内細菌叢の影響~	杉原	康平	204
トコトリエノールの抗肥満作用に関して		優吾	206
アスパラギン酸経路における鍵酵素の構造生物学的研究		順司	
テトラヒドロビオプテリンを介した褐色脂肪細胞および全身のエネルギー・糖代謝調節機構		靖生	
食品成分による PKA/HSL 経路を標的とした抗肥満作用 ······		知紀	
線虫 Caenorhabditis elegans を用いた食品成分の機能性評価について		泰希	
腸内細菌は NAD ⁺ 前駆体の体内利用に重要な役割を果たしている		圭介	
食品に含まれる葉酸化合物の簡便な分析方法の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		喬平	
一般研究発表	3 1/3	1	-10
1. 酵素・タンパク質の構造・機能			
1-Ⅱ-1. 耐熱性 PQQ 依存性アルドース脱水素酵素を基盤とした直接電子移動型酵素の開発			
	里村	武節	222
$1-II-2$. 好熱性真菌における γ -アミノ酪酸 (GABA)酸化酵素の探索と解析 … 阿部 一樹,財津 奏太,			
		. •	_

1- II -3.	MK-4 変換反応におけるナフトキノン環 2 位のメチル基の	重要性								
				小原沢	諒人,	須原	義智,	廣田	佳久	223
1- Ⅱ -4.	有機セレン新奇代謝系の細菌鍵酵素 TmsA の速度論的解析	ŕ								
	曽羽香南子,越智 杏奈,井上 真男,青	 野	陸,	佐藤	総一,	小椋	康光,	三原	久明	223
1-Ⅱ-5.	PEG 修飾によるビリルビン酸化酵素の電極反応制御									
		1納	建司,	山下	哲,	宋和	慶盛,	片岡	邦重	224
2-Ⅱ-1.	古細菌型メバロン酸経路に存在するプレニル化フラビン要				ラーゼ	の特性	評価			
					夏海,	伊藤	智和,	邊見	久	237
2- Ⅱ -2.	超好熱アーキア由来プロリン脱水素酵素複合体のプロリン					1.1.	pare	Lнн →		
2 11 2	てよし、ゴム尼公中は地・D コー・中市とてし、じの				竜巳,	朴	順司,	偿廷	春彦	237
2-11-3.	モウセンゴケ属食虫植物 Drosera adelae 由来キチナーゼの 米田 一成,成瀬 佑樹,星				阳泽	想定	春彦.	十白	福星力	220
2 П 4	甘草由来機能性成分であるカルコン抱合代謝物の網羅的な			元个	劢任,	俊庭	苷炒,	八局	拟八	238
∠- II - 4 .				淫谷	圭介	西川	美宇,	生城	直一	238
2- ∏ -5	GGCX の作用メカニズム解明を目指した近接タンパク質の				工 刀,	ΕΙ/Π	人 」,	1.7%	77	230
2 11 0.	· · · · · · · · · · · · · · · · · · ·				俊彦,	廣田	佳久,	井上	聡	239
2. 代謝,	, 生合成, 動態と体内輸送									
1- Ⅱ -6.	ココナッツ油の摂取は組織中ビタミンE含量を増加させる	· ·····		小林	美里,	壁谷	親,	池田	彩子	224
1-Ⅱ-7.	PLAAT5 は精巣において抗炎症性 N-アシルエタノールアミ	ミンの生	生合成	を担う						
	·······佐々木すみれ,Mamun Sikder M	/Ioham	mad,	三木	寿美,	長崎	祐樹,	太田	健一	
	星野 克明,上	:野 〕	王樹,	村上	誠,	上田	夏生,	宇山	徹	225
1- Ⅱ -8.	植物アスコルビン酸生合成の律速酵素 GDP-L-Galactose pho									
	田中 泰裕, 小					丸田	隆典,	石川	孝博	225
1- Ⅱ -9.	葉におけるアスコルビン酸再生能力の需要とアスコルビン						-W 1-L-		176+ -H-	
1 TI 10	************************************				貢哭,	右川	孝博,	丸田	隆典	226
1-11-10.	遮光条件の葉におけるアスコルビン酸分解の分子機構と分 				害山	ZIII	去相	1 III	久 出	226
2- ∏ -11	若年女性における血清 5-メチルテトラヒドロ葉酸と、ワン							儿田	性典	220
2-11-11,	酵素活性指標との関連・・・・・・ 久							堀口	さやか	
	福州市 一		秀興.				靖雄.		輝江	242
2-Ⅱ-12.	非妊娠女性の月経周期とワンカーボン代謝 庄	三司久	美子,	久保	佳範,	田島亜	紀子,	堀口	さやか	
	西	ī III	E純,	香川	靖雄,	福岡	秀興,	川端	輝江	242
2-Ⅱ-13.	種鶉へのビタミン D3 強化飼料給与が初生雛に及ぼす影響					山田	真菜,	黒澤	亮	243
2-Ⅱ-14.	ミトコンドリア DNA 低下細胞株の CoenzymeQ10 増加機構									
		国本 王	湍穂,	奥泉	怜奈,	蛭田	紗生,	須賀	祐輔	
	·	村	未里,	山本	順寛,	藤沢	章雄,	加柴	美里	243
2-Ⅱ-15.	葉酸の α-ポリグルタミル化を触媒する新奇酵素の同定	More & . m			V. 7-4-	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		/	hu	
0 T 46				田中	美穂,	邊見	久,	伊藤	智和	244
2-11-16.	大腸菌由来 α-ポリグルタミル化葉酸合成酵素ホモログの機 中村 梨歩, 田			J 322-	THI A	泊口	h	四盐	4n 1n	244
2 II 17	P-carotene 体内濃度の性差に関する研究 ····································						久,		智和	
	p-carotene 体内震度の性差に関する研究 植物におけるビタミン B2 輸送体の機能解析					术本 □叮	性又,	11 11	小小丁	44 3
∠-1V - 1.		医田日石	幸里	丸田	隆曲	石川	孝博	小川	青中	261
2-IV-2	先天性ビタミン B ₁₂ 代謝異常症原因遺伝子 <i>cbl</i> B RNAi によ									201
-· -·									重雄	261
2-IV-3.	出芽酵母におけるエリスロアスコルビン酸の生合成経路									

2-IV-4.	若齢期のメタボリック症候群モデルラットにおけるビタミンC排泄量の増加	
	·······三澤 莉帆, 田路 莉子, 金 東浩, 佐伯 茂, 小林 美里, 阪野 朋子, 池田 彩子 20	62
2-IV-5.	ビタミン K 体内動態の理解を目指したビタミン K 抱合体測定法の確立 	
	3原 義智, 西川 美宇, 生城 真一, 廣田 佳久 20 3月 義智, 西川 美宇, 生城 真一, 廣田 佳久 20	63
3. スト	レス応答、シグナル伝達、遺伝子発現調節	03
	ビタミンC不足がマウスの肝臓に及ぼす影響	
		27
1-Ⅲ-2.	ビタミン C による C2C12 細胞の筋分化抑制機構	
		27
1-Ⅲ-3.	骨格筋形成におけるレチノイン酸受容体γの役割	
		28
1-Ⅲ-4.	細胞質型アスコルビン酸ペルオキシダーゼによるグルタチオンレドックス状態と細胞死の制御	
_	······························· 佐藤 沙月, 菊樂 香奈, 三富 · 弦, 小川 貴央, 石川 孝博, 丸田 隆典 2.	28
1-Ⅲ-5.	苔類ゼニゴケ変異体を用いたアスコルビン酸応答遺伝子の探索 - ************************************	20
2 III 1	·························吉田 賢祐,田中 泰裕,石田 哲也,小川 貴央,重岡 成,丸田 隆典,石川 孝博 2. ウチワサボテン (Nopalea cochenillifera)のアスコルビン酸蓄積量の組織特異性と環境応答性の解析	29
∠-III-1.		10
2-Ⅲ-2	Bacillus subtilis における round-body の形成メカニズムと亜セレン酸還元への影響	1 2
2- m -2.		49
2-Ⅲ-3.	フェロトーシスにおける過酸化リン脂質の分解によるラジカルの形成とビタミン E による抑制	.,
		50
2-Ⅲ-4.	老化に伴う腎臓内ビタミン A 量の増加機序の解明	
		50
2-Ⅲ-5.	Vitamin D3 代謝体 secalciferol による自然免疫における抗炎症効果の解析	
		51
	・食品機能	
	ビタミン C 欠乏ラットにおける不安行動と脳内炎症の解析	29
1-Ⅲ-7.	ビタミン C は Batf3 遺伝子の DNA 脱メチル化と発現増加を誘導し、CD8+T 細胞 (キラー T 細胞)の	2.0
1 III 0	免疫応答を亢進させる近藤 健太,長谷川達矢,口分田美奈,縣 保年 2. 肥満マウスにおける各脂肪組織中のトコトリエノール量の解析と呼吸代謝能への影響	30
1-ш-8.	鈴木	30
1_Ⅲ_9	ビタミンEは光による牛乳の脂質酸化を抑制する	
	Provitamin D 含有食品の探索と UV-B ランプ照射による vitamin D 生成効率の検討	<i>J</i> 1
		31
2-Ⅲ-6.	Poly ($I:C$) を用いたウイルス感染様細胞におけるビタミン K 誘導体の評価	
		51
2-Ⅲ-7.	フェロトーシスに対するビタミン K 同族体や誘導体の構造特異性の評価	
		52
2-Ⅲ-8.	マウス海馬由来 HT-22 細胞へのエラスチン処理により誘導される細胞死に対する MK-4 ならびに	
	GGOH の保護効果 ····· 鈴木 藍花,佐藤 雅,何 欣蓉,Afifah Zahra Agista	
	大崎 雄介, 野地 智法, 北澤 春樹, 白川 仁 2.	52
2-Ⅲ-9.	Effects of feeding of vitamin K deficient diet on bile acid homeostasis and associated microbial changes in mice.	
		£2
2_Ⅲ 10	Yusuke Ohsaki , Tomonori Nochi , Michio Komai , Hitoshi Shirakawa 2. ビタミン A 応答性マイオカイン HtrA3 の骨格筋における機能 北風 智也 原田 直樹 山地 亮一 2.	
∠-ш-10.	- Cノ 、 A 心合は、 7 4 4 7 4 11 MA ツ月宿朋 における阪化 礼風 省也,原田 巨関,田地 完一 2.	23

5. 疾患・予防・薬理作用 1-IV-1. 疾患リスクを考慮したビタミンのバイオマーカーの位置づけ ……… 田中 清. 青 未空、桒原 1-IV-2. 病型診断およびビタミン D・カルシウムの充足度調査を行った偽性副甲状腺機能低下症の一例 ······山本 浩範, 鍵主 光里, 首藤 恵美, 武田 英二, 竹谷 慎治 232 1-IV-3. 分解耐性型ビタミン D 誘導体は細胞治療法に利用可能な多能性細胞の骨分化誘導に有用である 誠 233 1-IV-4. 変異型ビタミンD受容体に高い親和性を有する新規誘導体の探索 生城 真一, 橘高 敦史, 榊 利之, 安田 佳織 233 1-IV-5. 3CL プロテアーゼ阻害活性を有する新規ビタミン K3 誘導体の創製 1-IV-6. ビタミンEコハク酸によるがん細胞特異的アポトーシス誘導機構の検討 ······清藤 迪子,Ray Manobendro Nath,大園 瑞音,小暮健太朗 234 1-IV-7. ビタミンEエーテル誘導体の構造安定性と脂肪蓄積抑制効果 林 生成, Tapu SM Tafsirul Alam, 中尾 允泰, 佐野 茂樹, 小暮健太朗 235 1-IV-8. Novel vitamin E derivative ameliorates obesity in high-fat-diet induced obese mice Tapu S M Tafsirul Alam, Kinari Hayashi, Michiyasu Nakao, Shigeki Sano, Kentaro Kogure 235 1-Ⅳ-9. 骨・軟骨形成におけるビタミン K 変換酵素 UBIAD1 および Menaquinone-4 の機能解析 1-IV-10. 脂肪組織におけるビタミン K 変換酵素 (UBIAD1) の機能解析 …………………………………………中川 公恵,堀米 梨花,名倉萌々花,佐伯 萌佳,平島 俊亮 236 2-Ⅱ-6. ビタミンEコハク酸の細胞障害性制御による抗肥満効果の誘導 …… 瀬戸 唯加, 山﨑美沙季, 小暮健太朗 239 2-Ⅱ-7. リポキシトーシス実行因子 Lipo-1,Lipo-2 KO マウスの解析 ……… 松岡 正城, 今井 浩孝 240 2-Ⅱ-8. 心不全突然死を抑制する CPZ 耐性腸内細菌のビタミン E 要求性とその抑制機構の解析 知子, 今井 浩孝 240 2-Ⅱ-9. 2 種類の軟骨特異的 Cre マウスを用いた軟骨特異的 GPx4 欠損マウスの性状解析 2-Ⅱ-10. EPC による新たな細胞死抑制機能の解析 ……………………… 古里 紗葵, 須藤由季映, 松岡 正城, 下村明日香, 森 俊裕, 今井 浩孝 241 2-Ⅱ-18. 膵がんにおける安定化ビタミン E 誘導体の補完・代替医療成分としての可能性森 立葵、矢野 友啓. 佐藤 綾美 245 2-Ⅱ-19. 肝細胞がんに対する増殖抑制作用を向上させた非環式レチノイド誘導体の創製 2-II-20. 食餌性および遺伝性ビタミン D 欠乏モデルラットにおける肝線維化のリスク評価 2-Ⅱ-21. レスベラトロール関連化合物は非アルコール性脂肪性肝疾患モデルマウスの肝臓線維化を抑制する ······················· Tohfa Kabir,吉場 春輝,Afifah Zahra Agista,大崎 雄介,駒井三千夫,白川 仁 247 2-Ⅱ-22. ビタミンD欠乏モデルマウスを用いた薬剤誘導性大腸炎に対するマイタケの投与効果 ·······宫城 里彩, 釘宮 優希, 生城 真一, 西川 美宇 247 2-Ⅱ-23. 遺伝性および食餌誘導性ビタミンDシグナル欠乏ラットにおける薬剤誘導性大腸炎の病態解析 利之, 生城 真一, 西川 美宇 248 2-Ⅲ-11. 後期高齢者にとっての新たなビタミンDの意義 ………… 武田 英二, 梅本 誠彦, 兵藤 瑞紗, 森下 照大, 堤 理恵, 阪上 浩, 竹谷 豊 254 2-Ⅲ-12. 地域在住日本人高齢者における血清ピリドキサール 5'-リン酸濃度とプレフレイルの横断的観察研究

牧迫飛雄馬, 窪薗 琢郎, 大石

充, 竹中 重雄, 叶内 宏明 254

2-Ⅲ-13.	紫外線計測データに基づく新生児の血液中ビタミンD濃度と日光浴時間からの推計値との相関に関する研究	
	中島 英彰, 坂本 優子, 佐々木 徹, 本田 由佳	255
2-Ⅲ-14.	高齢ラットにおけるピリドキサール 5'-リン酸吸収能の低下および血漿 4-PA/PLP 比の上昇	
		255
2-Ⅲ-15.	ネフローゼ症候群モデルラットにおける Am80 の腎保護作用	
		256
2-Ⅲ-16.	ビタミン B ₁₂ 欠乏が線虫 Caenorhabditis elegans の社会行動に及ぼす影響 岡崎 生真, 美藤 友博	256
2-Ⅲ-17.	GGCX 阻害活性を有する新規ビタミン K 誘導体の創製	
		257
2-Ⅲ-18.	シクロアルカンの導入により神経分化誘導活性の増強を目指した新規ビタミン K 誘導体の創製	
		257
2-Ⅲ-19.	側鎖末端へのアルキル鎖導入により神経分化誘導活性の増強を目指した新規ビタミンK誘導体の合成	
		258
2-Ⅲ-20	葉酸,ホモシステイン代謝とビタミンD栄養状態の関連	
2 m 20.	平岡 真実, 坂本 香織, 庄司久美子, 百合本真弓, 金胎 芳子, 影山 光代, 香川 靖雄	258
2-Ⅲ-21	Photobacterium phosphoreum のヒスタミン生成における加水分解性タンニンの生成抑制効果	250
Z-m-21,	- Thomas and Thomas	250
2 Ш 22	抗 SARS-CoV-2 活性の増強を目指した新規ビタミン K 誘導体の創製	237
2-111-22.		250
2 111 22	水浸拘束ストレス負荷ラット副腎のアスコルビン酸と酸化ストレスおよび HSP25 誘導との関連	239
Z-III-23.		260
6 7. 1 E		200
	、ケミカルバイオロジー (合成など) - 労火ニベルルマファルバン輸送道体のニノブトルノス・ジング	
2-1V -6.	蛍光ラベル化アスコルビン酸誘導体のライブセルイメージング 再図 打木 表出 源久 加速用機裏 土畑 急渡 田井 奈様	262
2 11/ 5	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	263
2-1V-7.	FAD 依存性 Sulfide quinone oxidoreductase を素子とした硫化水素検出バイオセンサの開発	261
2 11/10	田島 魁人、金尾 忠芳、末信 一朗、里村 武範	264
2-17-8.	蛍光標識化レチノイド X 受容体 (RXR) を利用したコファクター特異性に基づく新たなリガンド探索技術の	261
	創出に関する研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	264
2-17-9.	リトコール酸誘導体 Dcha-20 の殺鼠剤としての有用性の検証	
		265
2-IV-10.	LC-MS/MS を用いた食品中のピロロキノリンキノンの分析法について還元型 PQQ やアミノ酸付加体を	
	考慮した条件の検討平川 祥成,加藤 主税,藤田 和弘,三毛門 毅,仲川 清隆	265
ランチョ	ョンセミナー	
	腸内細菌-腸-脳連関 … 須藤 信行	
	超高齢社会におけるサルコペニア、フレイルの意義 ~腸内細菌、ビタミンの役割を探る 荒井 秀典	
	腸内細菌代謝物と健康―ビタミンが仲介する腸内細菌と神経系のクロストークを例に― 小川 順	
	Our gut microbiome in neurological health and disease Eran Blacher, Ph.D.	
	日本人の 5,200 例の腸内マイクロバイオームの特徴 永田 尚義	276
	脳による敗血症制御メカニズム:神経ペプチド オレキシンとグレリンの関与 奥村 利勝	277
	アスタキサンチンの魅力およびその商業的生産	280
	ミトコンドリア栄養素としてのアスタキサンチン	281
	日本ビタミン学会第 76 回大会 学生優秀発表賞受賞者 (行頭の数字は号数 - 掲載順	
9-1.		
	曽羽香南子	
9-3.		
9-4.	床 生成	438

市民公開講座 (行頭の数字は号数)

	令和 5) 年度日本ビタミン学会 市民公開講座		
	とビタミン』 はじめに	製油 刮土	2 210
	日本人とビタミン D		
	ロ 年 八 こ こ フ 、 マ D ビ タ ミ ン B に よ る 健康 増 進 ・ 病気 の 予 防 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		5 314 号 314
	免疫は栄養がつくる―ビタミン類の働きを中心にして― ·······		
3.0-4. 2	元友は不食がつくる。 こうこく 娘の関さを中心にして	םיו יום נייי.	310
	次世代ミーティング(行頭の数字は号数)		
笙2回	次世代のビタミン学に繋げるイノベーションミーティング		
先∠ 凹			
0.1	ビタミンと健康増進・疾患リスク:臨床ビタミン学の意義	пн а	E 111
	# 造生物学に基づくビタミンと殺鼠剤の新展開 ····································		
9-2. 1	再担生物子に基づくピグミノこ权	以田 一	443
	ビタミン研究委員会研究発表要旨(行頭の数字は会議回数	女 - 発表順位	位)
T 06:	南州バムン、外人田内子日人		
	溶性ビタミン総合研究委員会		
	タミンA関係 空間オミクス解析を用いた脂肪性肝炎による肝発がん微小環境の解明とレチノイン酸シグナルの	ነሷ ሁሎ	
3//-3.	空間		70
270.1		护小 佰州	ц /9
3/9-1.	CRABP1 結合を介した non-genomic 作用を発揮する新規レチノイドの創製研究	日小心 コノコ	
200.1			
	レチノイド X 受容体を標的とした創薬・ケミカルバイオロジー研究		
381-4.	レチノイン酸誘導性因子 IRF1 の抗ウイルス活性調節因子の解析 山根 大典,松本 萌,	除呵ことの	× 495
ク ビ	タミン D 関係		
	遺伝子改変ラットを用いた新規ビタミンD作用機序の解明		
311-2.		松油 禾田己	<u> </u>
380-2	天然型ビタミン D およびビタミン D 誘導体の代謝と生理作用		
	22 位フッ素化ビタミン D ₃ の合成と基本的生物活性	女山 庄帽	ц 1 07
361-3.		直略 害月	-
		_{异 封} 見	
	角田 真二,齋藤 博,藤島 利江,榊 利之,	間同 秋又	. 494
3 F	タミンE関係		
	Pltp 遺伝子変異を持つ脂質異常症マウスにおける組織中ビタミン E 濃度の解析		
377-3.		油田 彩크	- 77
279.2	新規ビタミンE誘導体による脂肪蓄積抑制効果		
	飼料組成に対するビタミン E 代謝応答の相違		
	肝細胞および肝非実質細胞の共培養により構築した NASH モデル系の脂肪化と酸化ストレスに及		308
3/9-4.			± 260
270.5	ビタミンE添加の影響 田原裕衣菜, 谷岡 由梨, 山内 淳, ゼタミンEとCの相互作用: その経緯と展望		‡ 369
<i>5</i> /9-5.	ヒクミマECLの相互TF用・ての柱料と展差	呂 庠 一 物 大	c 370
/ L.º	カミンド間径		
	タミンK関係 - ビタミンV にとるテフトフテロンデサト見佐田 伊藤	r `	- 127
5/8-3.	ビタミン K によるテストステロン産生上昇作用 伊藤 暉, 大崎 雄介, 駒井三千夫,	□Л1 1_	_ 13/

378-4.	ビタミン K2 によるアポトーシス誘導の分子機構の解析		
		淳	137
378-5.	神経分化誘導作用を有するビタミン K 誘導体の創製と作用メカニズムの解析		
		義智	138
379-2.	ビタミン K 変換機構の骨形成における機能解析 平島 俊亮, 清岡 恭乃, 嘉悦慎一郎, 中川	公恵	367
5. そ	の他		
377-1.	肝臓免疫細胞における VDR 依存性の機能発現の解析… 慎島 誠,梅田 香織,山口 凉香,山岸 !	賢司	76
377-4.	遺伝子欠損マウスを用いた PLAAT ファミリーの機能解析		
		kder	
	佐々木すみれ,Zahir Hussain,宇山	徹	78
378-1.	染色体上における新規 VDR リガンドとタンパクアセチル化制御による VDR 転写制御機能の解析		
		崇広	
	黒川 友博, 岩城 海帆, 堤 梨乃, 長澤 🦻	和夫	135
	脂質メディエーター N-アシルエタノールアミンの生合成機構と生理機能に関する研究 宇山		407
381-1.	ALS とニーマンピック病におけるオキシステロール誘導性フェロトーシスの関与と脂溶性ビタミンの抑制効果	果	
		泰臣	492
381-2.	骨幹端異形成症原因遺伝子 GPx4 アミノ酸変異マウスの表現型解析とビタミン E と K の役割の解析		
	(2023 年度プロジェクト研究報告) 今井 浩孝, 中川 2		
381-5.	本間清一先生を偲んで 藤原	葉子	495
- · · ·	6. N. D. TIPPET P. A.		
	タミンB 研究委員会		
	タミン B1 関係	п//7	20
4/2-5.	ビタミン B ₁ 欠乏による記憶障害のメカニズム	坨	28
o ビ	タミン B2 関係		
	植物におけるビタミン B ₂ 代謝制御の生理的意義 杉井 天真, 小川 大東 大東 大東 大東 大東 大東 大東 大	害山	226
	付熱性真菌 D-アミノ酸オキシダーゼを用いた D-アミノ酸高生産細菌単離の試み		
	変異型 D-アミノ酸酸化酵素によるイミン合成	+ H]	330
4/4-/.		表々	330
	フェイン ガマガナティ、ロガー主色、石刷 一体的、代料 で	ボノ	330
3 F	タミン B6 関係		
	日本人高齢者の血清ピリドキサール 5'-リン酸濃度と認知機能の関係		
.,,,,,		大貴	
	櫻井 孝, 新飯田俊平, 青 未空, 田中 清, 竹中		
473-9.		智和	
		範久	
		真	
		浩子	
4. ビ	タミン B ₁₂ 関係		
	食用藻類のビタミン B ₁₂ と葉酸含量の相関について … 渡邉 文雄,小関 喬平,吉村 隆盛,美藤		
475-4.	赤いビタミンの面白さに身を任せて	文雄	512
E 7	/¬>>		
	イアシン NAD 合成酵素 Nmnat1 の生体内機能の解析	出	21
4/2-3.	NAD 口风时系 Nilliati 小工评的成比小所们 中川	示	26

472-7.	Saccharolobus solfataricus 由来グルタミン酸デヒドロゲナーゼが示す基質特異性の温度依存的変化	ዸ		
	櫻庭 春彦,岡部 樹,平野 将司,米田 一成,瀬川美菜子,大森 勇門,	大島	敏久	30
	Nmnat 3 欠損はマラリア感染を促進する			126
475-7.	NAD 前駆体の生体代謝経路の解析	… 中川	崇	514
6. 葉	酸			
	葉酸代謝とビオプテリン代謝の接点河野はるか,原 怜,古田 忠臣,			26
	葉酸代謝から見た個別化栄養と疾患の予防平岡 真実, 坂本 香織,			
475-8.	大腸菌の新規葉酸修飾酵素の同定	伊藤	智和	515
7. そ				
	担子菌の子実体形成過程とオートファジーの関係	渡邉	彰	25
472-4.	細菌による食品内ヒスタミン生成と食品成分によるヒスタミン生成抑制			
			陽子	27
	好熱菌リジン生合成酵素の進化と機能変換		真	29
472-8.	膜小胞高生産性細菌 Shewanella vesiculosaHM13 における表層多糖生合成関連酵素 WecA の生理的			
		栗原	達夫	31
472-9.	エンド型ナイロンオリゴマー分解酵素 NylC の立体構造に基づく自己分断機構			
			誠司	
	オレアミドの肥満抑制効果		亮一	
	スクミリンゴガイ卵塊からのタンパク質の物性研究		英明	
	ポリスルフィド還元酵素の基質特異性と反応機構に関して		久明	
	PEG 修飾による酵素 - 電極反応の制御		邦重	
	酵母のピロロキノリンキノン合成の確認と局在性について		博英	
	Youhaiella 属細菌のゲノムに存在するピロロキノリンキノン依存性脱水素酵素		寿治	
	カプサイシン生合成の鍵酵素の構造・機能解析		宏次	
	電子伝達メディエータ融合型 PQQ 依存性アルドース脱水素酵素の創製		武範	327
	日本人の食事摂取基準 (2025 年版) における水溶性ビタミンの策定について			510
	食事摂取基準 2030 年版に向けて 今後の課題		清	511
	他の栄養関連規制における食事摂取基準の影響について		泰地	
	一価銅酸化酵素の低親和性銅結合部位が電極触媒活性に及ぼす影響		邦重	
	メトキシフラボンによる GPR97 を介した筋肥大促進機構について	山地	亮一	513
475-9.	Fusarium sp. No. 17 株由来のアクリル酸水和酵素遺伝子のクローニングと発現			
		柳川	顕秀	516
	v B 研究委員会 2023 (令和 5) 年度シンポジウム			
	病態解明を目指した酵素研究」			
	はじめに		浩子	318
	セリンパルミトイル転移酵素による異常スフィンゴ脂質合成と神経障害		浩子	318
	スフィンゴミエリン合成酵素 KO マウスを利用した疾患モデルの確立と病態機序解明		真	320
	アデノ随伴ウイルスベクターによる遺伝子治療		慎一	321
	細菌性ヒスチジンデカルボキシラーゼとアレルギー様食中毒		陽子	
	キサンチン酸化還元酵素と痛風・筋萎縮性側索硬化症		輝男	323
5.6-7.	細菌性コラゲナーゼの基礎と応用に関する研究	保川	清	324

	ビタミン C 研究委員会	
170)-1. 骨格筋分化におけるビタミン C のエピジェネティック作用	
		33
)-2 . 植物における強固なアスコルビン酸再生の仕組みと意義 丸田 隆典	34
170)-3. ビタミン C 飲料の開発と課題について平山 善丈	36
170)-4. 【特別講演】アスコルビン酸の抗酸化能と生合成に関する分子生理学的研究 石川 孝博	36
171	-1. 酵母におけるエリスロアスコルビン酸合成の律速段階はどこか 尼子 克己, 阿木 渚彩, 江端 美裕	371
171	-2. アスコルビン酸水溶液の選択摂取行動における酸味の役割の検討	
		372
171	-3. ビタミン C 欠乏がストレスによるマウスの不安行動増加に及ぼす影響 川井 大雅,竹中 麻子	373
172	2-1. ビタミンC不足の影響(マウス肝臓) 光丸友華梨,佐藤 綾美,福井 浩二,近藤 嘉高,石神 昭人	439
172	2-2. ビタミン C による筋分化抑制 (C2C12 細胞)	
		440
172	2-3.アスコルビン酸生合成の光制御に関わる VTC3 タンパク質の機能解析	
		441
2.	JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY Vol 69, No 6 ·····	81
5 · 6.	JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY Vol 70, No 1	332
7.	JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY Vol 70, No 2	375
8.	JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY Vol 70, No 3	409
10.	JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY Vol 70, No 4 · · · · · · · · · · · · · · · · · ·	464
12.	JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY Vol 70, No 5	517
	<u> </u>	
1.	2023 年度第 4 回理事会議題	40
	2024 (令和 6)年度第 1 回理事会議題 ······	341
	2024 (令和 6)年度定時総会議事録	383
	第 76 回大会	471
	1301 14000 17311	
1.	特許出願公開抜粋(2023 年 9 月 28 日~ 11 月 1 日発行分)	38
2.	destruction of the Unit (and the unit of t	87
3.	特許出願公開抜粋 (2023 年 11 月 30 日~ 12 月 27 日発行分)	140
	特許出願公開抜粋 (2023 年 12 月 28 日~ 3 月 27 日発行分)····································	338
	thet there are that (and the property of the p	381
8.	thet there are that (and the property of the p	416
9.	thet there are that (and the control of the control	446
10.		
11.	特許出願公開抜粋 (2024 年 7 月 25 日~ 9 月 4 日発行分)·······	
12	特許出願公問抜款 (2021年77) 25 日 2月 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3	

著者索引

総説、総合論文、ノート、ミニレビュー、症例報告、研究論文紹介、トピックスのみ掲載

ア	青	未空 108,116	ク	窪田	舞・	121	/	野坂	和人 484
	浅生	義人 108		熊崎で	ひかり・	285	八	濱田	侑希 488
	油田	芽衣 296		口分目	∃政夫・	112		林	秀行 430
	粟根	雅章 108		黒澤	亮 ·	289		原田	直樹 70,121
1	池田	彩子 399,402		桒原	晶子.	116,506		阪野	朋子 399
	伊佐	保香 306		古賀	武尊.	296,427		美藤	友博 501
	石神	昭人 363		小関		501		廣森	浩裕 347
	伊東	秀之 296		小林	美里 ·	399,402	フ	深野	玲司 112
	伊藤	勇悟427		米中	純子.	112	ホ	星野	克明65
	今村	栄次 112		小山	智大.	97		星野	真理65
	岩岡	裕二 296	サ	蔡	楡・	506		堀越	洋輔 392
ウ	上田	夏生8,65		財賀	大行.	65	~	前	史織 296
	上野	正樹65		佐伯	茂.	399		前多	隼人 421
	梅林	志浩 501		佐々ス	木すみれ	L ····· 8,65		増田	真志 488
	宇山	徹8,65		佐藤	綾美・	479		松浦	達也 392
工	江頭初	枯嘉合 461		佐藤	陽.	97		松田	一朗97
	エスニ	エム カレドゥル ラハマン …65		ザヒノ	レフセイ	イン65		真鍋	祐樹 387
オ	老川	典夫53	シ	塩沢	浩太 ·	21	Ξ	三木	寿美65
	王堂	哲 285		白井	祐佳·	112		三毛門	月 毅 353
	大崎	雄介21,358		白川	仁:	21,358		三島	英換91
	太田	健一65	ス	菅原	達也.	387		三嶋	智之 306
	大野	朝子 296		祐森	誠司.	285		宮地	隆史 112
	大森	啓充 112	タ	田井	章博・	296,427		宮脇	尚志 108
	岡田	只士18		高橋	厚.	347	<u>ل</u>	村上	誠65
	岡田	和花 358		瀧川	正紀 ·	363	×	目崎	喜弘74
	岡野星	登志夫97		竹谷	豊.	488	Ŧ	モハメ	ッド マムン シクダル65
カ	加藤	明彦 112		辰巳	理奈・	70	ヤ	ЩП	真由70
	加藤	俊治 353		田中	清·	108,116		山﨑	雅美 112
	加藤	主税 353		谷口	陸斗,	488		山田	惠子 301
	香取	卓 347	ナ	永江	彰子.	112		山田	正二 301
	川原	直晃 296		中川	公恵・	97		山田	真菜 289
丰	喜多	貞彦 108		仲川	清隆・	353,392		山地	亮一 70,121
	北風	智也 70,121		中辻は	あいの・	70	∣∃	吉田	愛菜 296
	北川	尚美 347		中富	毅.	392	ワ	和田	昭盛97
	橘髙	敦史 451		中村	日南·	306		渡邉	文雄 501
	金	東浩 399	=	西川	美宇·	1			